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Abstract

Engineering and scientific applications are becoming imgiregly modular, utilizing
publicly defined interfaces to integrate third party toatsl dibraries for services such as mesh
generation, data partitioning, equation solvers and dpétion. As a result, it is important to
understand and model the interactions between these gariodules, and to develop good
abstract interfaces between them. One category of mochaésstbecoming increasingly
important is abstract numerical algorithms (ANAs). ANAghkuas linear and nonlinear
equation solvers, methods for stability and bifurcatioalgsis, uncertainty quantification
methods and nonlinear programming solvers for optimizasice typically mathematically
sophisticated but have surprisingly little essential adejgmce on the details of what computer
system is being used or how matrices and vectors are storedaanputed. As a result, using
abstract interface capabilities in languages such as Ce-gam implement ANA software that
it will work, unchanged, with a variety of applications amadar algebra libraries.

In this paper, we provide an overview of the Thyra effort what its most basic level
defines fundamental abstract linear operator and vectenfages. These linear operator/vector
interfaces provide the basic functionality and interopéity for a broad range of ANAs.

Many other higher-level abstractions are built on top of Thgra operator/vector interfaces.
The Trilinos packagehyr a defines these different sets of C++ interfaces and provides
optional support software.
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1 Introduction

One area of steady improvement in large-scale engineeridgeientific applications is the
increased modularity of application design and developn@pecification of publicly-defined
interfaces, combined with the use of third-party softwaredtisfy critical technology needs in
areas such as mesh generation, data partitioning andsohagthods have been generally positive
developments in application design. While the use of thadypsoftware introduces dependencies
from the application developer’s perspective, it also gitree application access to the latest
technology in these areas, amortizes library and tool deveént across multiple applications and,
if properly designed, gives the application easy accessoie inan one option for each critical
technology area, e.g., access to multiple linear solvekqes.

One category of modules that is becoming increasingly in@mbiis abstract numerical algorithms
(ANASs). ANAs such as linear and nonlinear equation solversthods for stability and bifurcation
analysis, transient solvers, uncertainty quantificati@ihads, and nonlinear programming solvers
for optimization are typically mathematically sophistiea but have surprisingly little essential
dependence on the details of what computer system is beathardhow matrices and vectors are
stored and computed. Thus, by using abstract interfacebddies in languages such as C++, we
can implement ANA software such that it will work, unchangedth a variety of applications and
linear algebra libraries.

Here we describe a set of abstract operator/vector intesféttat allows the specification of ANAs
from basic Krylov linear equation solvers all the way up ttenor-point methods for optimization.
At the core, we define a set of basic operator/vector integdhat form the the foundation for (i)
ANA development, (ii) the integration of an ANA into an apgaltion (APP) and (iii) providing
services to the ANA from a linear algebra library (LAL). Byraging on a simple minimal
common interface layer such as the Fundamental Thyra ANA&peéVector Interfaces described
here, we eliminate the many-to-many dependency problen\N#/APP interfaces.

It is difficult to describe a set of linear algebra interfacesgside of the context of some class of
numerical problems. For this purpose, we will consider nioa¢algorithms where it is possible
to implement all of the required operations exclusivelotigh well defined interfaces to vectors,
vector spaces, and linear operators and higher level afisina built on these. The fundamental
Thyra operator/vector interfaces described here are thewmmn denominator of all abstract
numerical algorithms.

We assume that the reader has a basic understanding of vedtmtion/transformation operators
(RTOp) [3], is comfortable with object-orientation [11]d&++, and knows how to read basic
Unified Modeling Language (UML) [10] class diagrams. We assume that the reader has some
background in large-scale numerics and will therefore be &happreciate the challenges that are
addressed by Thyra.

Note that the online documentation for Thyra at
http://trilinos.sandia.gov/ packages/thyra

should be the definitive information source for Thyra. Thigaiment only tries to provide an
overview of Thyra and explain the philosophy behind it.



2 Classification of linear algebra and other interfaces

Although we will discuss APPs, ANAs and LALSs in detail latarthis section, we want to briefly
introduce these terms here to make them clear. Also, alththeye are certainly other types of
modules in a large-scale scientific/engineering appbicative only focus on these three since they
are the ones more directly related to ANAs.

e Application (APP): The modules of an application that areAA or LAL modules.
Typically this includes the code that is unique to the agpian itself such as the code that
formulates and generates the discrete problem to be sdivegtneral it would also include
other third-party software that is not an ANA or LAL module.

e Abstract Numerical Algorithm (ANA): Software that drivessalution process, e.g., an
iterative linear or nonlinear solver. This type of packagevjles solutions to and requires
services from the APP, and utilizes services from one or raéies. It can usually be
written so that it does not depend on the details of the coemalatform, or the details of
how the APP and LALs are implemented, so that an ANA can be asezss many APPs
and with many LALSs.

e Linear Algebra Library (LAL): Software that provides theilitly to construct concrete linear
algebra objects such as matrices and vectors. A LAL can &sodpecific linear solver or
preconditioner.

An important focus of this paper is to clearly identify thédractions between APPs, ANAs and
LALs for the purposes of defining the Thyra interfaces andiffeigntiate the Thyra interfaces
from other interfacing efforts.

The requirements for the linear algebra objects as impogethANA are very different from the
requirements imposed by an APP code. In order to differenttee various types of interfaces and
the requirements associated with each, consider Figurais.fijure shows the three major
categories of software modules that make up a complete ncethapplication. The first category
is application (APP) software in which the underlying dataeéfined for the problem. This could
be something as simple as the right-hand-side and matrikaeats of a single linear system or
as complex as a finite-element method for a 3-D nonlinear B@istrained optimization problem.
The second category is linear algebra library (LAL) softevtirat implements basic linear algebra
operations [9, 1, 5, 13, 2, 12]. These types of software aelprimarily matrix-vector
multiplication, the creation of a preconditioner (e.g. [l.ldnd may even include several different
types of direct linear solvers. The third category is ANAta@fre that drives the main solution
process and includes such algorithms as iterative mettowdiséar and nonlinear systems; explicit
and implicit methods for ODEs and DAEs; and nonlinear prograng (NLP) solvers [16]. There
are many example software packages [2, 13, 12, 7, 4] thahicoANA software.

The types of ANAs described here only require operatiorss ilatrix-vector multiplication, linear
solves and certain types of vector reduction and transfbomaperations. All of these operations
can be performed with only a very abstract view of vectorstmespaces and linear operators.

An application code, however, has the responsibility ofydafing vector and matrix objects and
requires the passing of explicit function and gradient gadatries, sometimes in a distributed
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memory parallel environment. This is the purpose of an ARR/Interface. This involves a very
different set of requirements than those described abaovliéANA/APP and ANA/LAL
interfaces. Examples of APP/LAL interfaces include the fEband much of the ESI [14].

Figure 1 also shows a set of LAL/LAL interfaces that allowsetr algebra objects from one LAL
to collaborate with the objects from another LAL. Thesestifsices are very similar to the
APP/LAL interfaces and the requirements for this type ogifgce is also not addressed by Thyra.
The ESI [14] contains examples of LAL/LAL interfaces.



ANA/LAL interface [\
Not Parallel Aware!

vector [\

Interface 1.%
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@ Interface
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Figure 1. UML [6] class diagram : Interfaces between abstract nu-
merical algorithm (ANA), linear algebra library (LAL), anabplication
(APP) software.
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3 Some Basic Requirements for Thyra
Before describing the C++ interfaces for Thyra, some basicirements are stated.

1. Thyra interfaces should be portable to all the ASC [17{fptans where ASC applications
might run and to other important platforms.

2. Thyra interfaces should provide for stable and accuratearical computations at a
fundamental level.

3. Thyra should provide a minimal, but complete, interfdta fiddresses all the basic
efficiency needs (in both speed and storage) which will tésulear-optimal
implementations of all of the objects and all of the above tioaed ANA algorithms that
use these objects.

4. Maximally general ANAs developed with Thyra should beedtiol transparently utilize
different types of computing environments such as SPMident/servet, out-of-coré, and
any combination of these configurations.

5. The work required to implement adapter subclasses (se@\tapter” pattern in [11]) for
and with Thyra should be minimal and straightforward forddlthe existing related linear
algebra and ANA interfaces. This requirement is facilitblby the fact that the Thyra
interfaces are minimal.

A hand-coded program (e.g. using Fortran 77 and MPI) shooighrovide any significant gains in
performance in any of the above categories in any computimgament or configuration. A
hand-coded algorithm in Fortran 77 with MPI1 should not beedblprovide significant
improvements in storage requirements, computationaldspenumerical stability. There are
many numerical algorithms can can not be considered to t&radt” (e.g. Gaussian Elimination)
and therefore Thyra and like abstract interfaces shouldeatsed for such algorithms. However,
drawly the line between an ANA and a non-ANA can be quite fumzpractice.

1Single Program Multiple Data (SPMD): A single program rurmin a distributed-memory environment on multiple
parallel processors

2Client/Server: The ANA runs in a process on a client compatet the APP and LAL run in processors on a server

30ut-of-core: The data for the problem is stored on disk andasl from and written to back disk as needed

11



4 Mathematical Foundation for Fundamental Thyra ANA
Operator/Vector Interfaces

Before describing th&hyra Fundamental ANA Operator/Vector Interfadleat form the
foundation for all of the Thyra ANA interfaces in more detaile must first clearly define the
mathematical foundation for the abstractions of vectoestar spaces, and linear operators.

All Thyra vectors belong to a vector space and are reprelsknées an array of scalar coefficients
%€ R"and a (non-unique) basisc R™*" of the form

X =EX. @

For a given Thyra vector space, the basis represent&tiorR "*" is non-unique but the symmetric
positive definite scalar (inner) product matrix

Q=E"E (2)
whereQ € R™" is unique. GiverQ € R™", the scalar product is defined as
Xy=81Qy=<%§>. (3)

ForQ € R™"to be full rank,E € R™" must be full rank. Here we define a Euclidean vector
space as one whefe=1 ¢ R™"andQ=E"E =1 ¢ R™".

In Thyra, vector spaces and vectors are abstracted using-thdoase interface classes

Thyra: : Vect or SpaceBase andThyr a: : Vect or Base respectively. Vectors are created from a
vector space using the “Abstract Factory” design pattemngugie nonmember function

creat eMenber (vecSpc).

In addition to vectors and vector spaces, Thyra also definear operators which linearly map
vectors from one vector space to another. The definition ofemt operator is strongly influenced
by the definition of the scalar product associated with theorespaces and whether the mapping is
between Euclidean vectoys= Axor between coefficient vectoys=AX. In Thyra, vectors are a
specialization of linear operators and therefore everyords also a linear operator. Therefore,
when one writes

z=x"y (4)

thenxt must be interpreted to be the adjoint linear operator. of

Given this notation, the vectorwould be considered to live an Euclidean vector spageR"

while the vectox'would be considered to live in the non-Euclidean vector spae X which is
defined by the scalar product mattxe R"". Therefore, it is actually not clear whether an
abstract vector object represents the Euclidean vetaR " which just happens to be stored as a
set of coefficientx &€ X or if it represents the coefficient vectors X themselves. This ambiguity
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of the interpretation of vectors and linear operators a¢sults from the ambiguity of
interpretation of the vectors in that they can be thoughtsaha Euclidean linear operators that
only update the coefficient vectors or as linear operat@sabt directly on vector coefficients.

The Fundamental Thyra ANA Operator/Vector Interfaces iegtinat every Thyra vector be
represented as a finite-dimensional set of scalar coeffgcaend that the scalar productX, y > be
equivalent to the two-sided application some finite-din@ma symmetric positive definite matrix
Q € R™Msuch thak %, ¥ >= %" Qy. The Thyra interfaces do not try to pretend that its vectoes a
infinite dimensional or that they admit more general implatagons as allowed by infinite
dimensional Hilbert spaces. While every Thyra vector messtored as a set of scalar coefficients
the interfaces make no assumptions whatsoever about whamvahose coefficients are stored.
A fully general ANA can make no assumptions about how vedoesstored or laid out in

memory, only that those coefficients do exist and that théficamts can be exposed to reduction
and transformation operators (see [3]).

While accessing the elements of a vector is ill advised inreeg# ANA, the Thyra vector interface
supports acquiring direct views of any range of vector coigffit data (see
Thyra: : Vect or Base: : acqui reDet achedVi ew(. . .)).

Again, thyra does not try to hide the fact that a vector is $ynapset of scalar coefficients
associated with some basis. Thyra does not even really kgdp the client from accessing the
actual coefficients of the vectors since it can access thémami RTOp object if desired. What
Thyra does do is to abstract where the vector coefficientsdind what native data structure is used
to hold the coefficients. None of vector coefficients may dveirectly be head in main memory
in the process where the ANA is running but there is aways enfms very inefficient) mechanism
to get a view of them. ANAs that want to be maximally general efficient should not try to
directly access the vector elements explicitly and many ANMA not need to. However, there are
perfectly reasonable ANAs that do need to access the expdictor coefficients for vectors from
certain vector spaces (such as vectors in the design spaoen@ reduced-space optimization
algorithms) and Thyra provides efficient and yet 100% gdneags to access these coefficients.
Every Thyra vector space also has a finite dimension thattissaible as a property of the vector
space and in integer value.

While Thyra requires vectors to be finite dimensional andvigetor coefficients must be
accessible (if to none other than to RTOps), it allows cotepleeedom in the implementation of
scalar products of general linear operators that map veftom one vector space to another.
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5 Overview of Fundamental Thyra ANA Operator/Vector Interf aces

The Fundamental Thyra ANA Operator/Vector Interfaces am in Figure 2. The key
abstractions include vectors, vector spaces, and linezmatgrs. All of the interfaces are templated
on theScal ar type (the UML notation for templated classes is not usedérfitjure for the sake of
improving readability).

Vector space is the foundation for all other abstractiorextdt spaces are abstracted through the
Vect or SpaceBase interface. AVect or SpaceBase object acts primarily as an “Abstract
Factory” [11] that creates vector objects (which are thetjrcts” in the “Abstract Factory” design
pattern).

Vectors are abstracted through tect or Base interface. The/ect or Base interface is very
minimal and really only defines one nontrivial functiappl yOp(. . . ). Theappl yOp(. . .)
function accepts user-defined (i.e. ANA-defined) reductransformation operator (RTOp)
objects through the templated RTOp C++ interf&d&OpPack: : RTOpT. An ever increasing set
of concrete implementations of RTOps is provided along witapper convenience functions in
the ANA support code collection. The set of operations is alssily extensible. Every

Vect or Base object provides access to ect or SpaceBase (that was used to create the
Vect or Base object) through the functiospace() .

TheVect or SpaceBase interface also provides the ability to credel t i Vect or Base
objects through ther eat eMenber s( numvenber s) function. AMul ti Vect or Baseis a
tall thin dense matrix where each column in the matrix \éeat or Base object which is
accessible through theol (. . . ) function.Mul t i Vect or Bases are needed for near-optimal
processor cache performance (in serial and parallel pnogjrand to minimize the number of
global communications in a distributed parallel envirommdheMul t i Vect or Base interface
is useful in many different types ANAs such as block Krylovthasls. The interface class

Vect or Base is derived fromMul t i Vect or Base so that every/ect or Baseis a

Mul ti Vect or Base. This simplifies the development of ANAs in that any ANA thandandle
Mul ti Vect or Base objects should automatically be able to accéptt or Base objects as
well.

Vect or SpaceBase declares a virtual function callestcal ar Pr od( x, y) which computes
the scalar product x,y > for the vector space. There is alsd/al t i Vect or Base version

Vect or SpaceBase: : scal ar Prods(...) (not shown in the figure) that computes the
scalar products of each set of column vectors in two multitmes. Finally,Vect or SpaceBase
also includes the ability to determine the compatibilitywettors from different vector spaces
through the function sConpat i bl e( vecSpc) . This is useful primarily for error checking and
debugging.

Another important type of linear algebra abstraction isadir operator which is represented by the
interface clas&i near OpBase. ThelLi near OQpBase interface is used to represent quantities
such as a Jacobian matrix.LA near OpBase object defines a linear mapping from vectors in one
vector space (called thionai n) to vectors in another vector space (calledthege). Every

Li near OpBase object provides access to these vector spaces throughrtbédiusdonai n()
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andr ange() . The exact form of this mapping, as implemented by the fonappl y(...),Iis
Y =aMX+BY (5)
whereM is aLi near OpBase object; X andY areMul t i Vect or Base objects; andx andf3 are

Scal ar objects.

A Li near OpBase object can also, optionally, support the transpose (oria)joperation:
Y =aop(M)X+BY (6)

through the functiomppl yTr anspose(. . .),whereM is aLi near OpBase object;op(M)
isMT or M" (as determined by theon jargument)X andY areMul t i Vect or Base objects;
anda andf areScal ar objects. The functiomppl yTr anspose( EConj ) will return false if a
particular form of the transpose is not supported.

If the adjoint is supported, then it must satisfy the adjpirttperty Specifically, for any two vectors
w € D (domain space) ande R (range space), the adjoint operation must obey the adjoint

property
<UAV>g=< Aluv>,.

Another important part of this design is the fact thvat t i Vect or Base derives from
Li near OpBase and therefore every multi-vector object is also a linearafme. This is an
elegant way to support the notions of block inner productsidack updates.

A block inner product is specified as
Z=Y"x

whereY, X andZ are all multi-vectors. Note that sindeis a linear operator thevi? X is not
simply the block dot product involving the coefficients boustead must be consistent with the
scalar product for the range ¥t

A block update takes the form
Z=0aYX+pBz

whereY, X andZ are all multi-vectors and andf3 are scalars.

Also note that sinc®Ul t i Vect or Base derives fromLi near OpBase andVect or Base
derives fromMul t i Vect or Base, therefore, every vector object is also a linear operatdnil&V
this may not be a terribly useful feature it does mean thatroust interpret/”x to be the same as
< y,x > and not just the dot product when the space is non-euclidean.
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UML Notation

class

class name

space

smallVecSpcFcty \]

Thyra::VectorSpaceFactoryBase |

pc(in dim : int)

Thyra::VectorSpaceBase

dim : int

T
«create»

<___1

|

0:
createMembers(in numMembers : int) : MultiVectorBase
isCompatible(in vecSpc : VectorSpaceBase) : bool
scalarProd(in x : VectorBase, in y : VectorBase) : Scalar

domain

range

Thyra::LinearOpBase

Class1

«create»

lapplySupports(in conj) : bool

AV

p— lapplyTranspos 1 conj) : bool )
e e lapply(in conj, in X : inout Y : Base, in ...)
JAN

lapplyTranspose(in conj, in X : MultiVectorBase, inout Y : MultiVectorBase, in ...)

operations.

generalization

composition association

multplcity

Class3

selfassociation

J

@ association

«create»

Thyra::MultiVectorBase
lapplyOp(in op : RTOpT, inout ...)
isubView(in col_rng : Range1D) : MultiVectorBase
isubView(in numCols : int, in cols[1..numCols] : int) : MultiVectorBase

columns

Thyra::VectorBase
applyOp(in op : RTOpT, inout ...)

RTOpPack::RTOpT

lapply_op(inout ...)
reduce_reduct_objs(inout ...

)

Figure 2. UML class diagram : The fundamental Thyra ANA opera-

tor/vector interfaces
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6 Summary

The Fundamental Thyra Operator/Vector Interfaces prothédntersection of all of the
functionality required of linear operators and vectors byagety of abstract numerical algorithms
ranging from iterative linear solvers all the way up to op#ers. By adopting Thyra as a standard
interface layer, interoperability between applicatiditseear algebra libraries, and abstract

numerical algorithms in advanced scientific computing emrinents becomes automatic to a large
extent.
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